memory-management - stack vs heap - What and where are the stack and heap?

stack and heap java / memory-management / stack / language-agnostic / heap / dynamic-memory-allocation

Programming language books explain that value types are created on the stack, and reference types are created on the heap, without explaining what these two things are. I haven't read a clear explanation of this. I understand what a stack is. But,

RajeshKdev



Answer #1

I will provide some simple annotated C code to illustrate all of this. The best way to learn is to run a program under a debugger and watch the behavior. If you prefer to read python, skip to the end of the answer :)

// Statically allocated in the data segment when the program/DLL is first loaded
// Deallocated when the program/DLL exits
// scope - can be accessed from anywhere in the code
int someGlobalVariable;

// Statically allocated in the data segment when the program is first loaded
// Deallocated when the program/DLL exits
// scope - can be accessed from anywhere in this particular code file
static int someStaticVariable;

// "someArgument" is allocated on the stack each time MyFunction is called
// "someArgument" is deallocated when MyFunction returns
// scope - can be accessed only within MyFunction()
void MyFunction(int someArgument) {

    // Statically allocated in the data segment when the program is first loaded
    // Deallocated when the program/DLL exits
    // scope - can be accessed only within MyFunction()
    static int someLocalStaticVariable;

    // Allocated on the stack each time MyFunction is called
    // Deallocated when MyFunction returns
    // scope - can be accessed only within MyFunction()
    int someLocalVariable;

    // A *pointer* is allocated on the stack each time MyFunction is called
    // This pointer is deallocated when MyFunction returns
    // scope - the pointer can be accessed only within MyFunction()
    int* someDynamicVariable;

    // This line causes space for an integer to be allocated in the heap
    // when this line is executed. Note this is not at the beginning of
    // the call to MyFunction(), like the automatic variables
    // scope - only code within MyFunction() can access this space
    // *through this particular variable*.
    // However, if you pass the address somewhere else, that code
    // can access it too
    someDynamicVariable = new int;


    // This line deallocates the space for the integer in the heap.
    // If we did not write it, the memory would be "leaked".
    // Note a fundamental difference between the stack and heap
    // the heap must be managed. The stack is managed for us.
    delete someDynamicVariable;

    // In other cases, instead of deallocating this heap space you
    // might store the address somewhere more permanent to use later.
    // Some languages even take care of deallocation for you... but
    // always it needs to be taken care of at runtime by some mechanism.

    // When the function returns, someArgument, someLocalVariable
    // and the pointer someDynamicVariable are deallocated.
    // The space pointed to by someDynamicVariable was already
    // deallocated prior to returning.
    return;
}

// Note that someGlobalVariable, someStaticVariable and
// someLocalStaticVariable continue to exist, and are not
// deallocated until the program exits.

Some of the syntax choices in C/C++ exacerbate this problem - for instance many people think global variables are not "static" because of the syntax shown below.

int var1; // Has global scope and static allocation
static int var2; // Has file scope and static allocation

int main() {return 0;}

Some people think of these concepts as C/C++ specific. They are not. For instance, the Python sample below illustrates all three types of allocation (there are some subtle differences possible in interpreted languages that I won't get into here).

from datetime import datetime

class Animal:
    _FavoriteFood = 'Undefined' # _FavoriteFood is statically allocated

    def PetAnimal(self):
        curTime = datetime.time(datetime.now()) # curTime is automatically allocatedion
        print("Thank you for petting me. But it's " + str(curTime) + ", you should feed me. My favorite food is " + self._FavoriteFood)

class Cat(Animal):
    _FavoriteFood = 'tuna' # Note since we override, Cat class has its own statically allocated _FavoriteFood variable, different from Animal's

class Dog(Animal):
    _FavoriteFood = 'steak' # Likewise, the Dog class gets its own static variable. Important to note - this one static variable is shared among all instances of Dog, hence it is not dynamic!


if __name__ == "__main__":
    whiskers = Cat() # Dynamically allocated
    fido = Dog() # Dynamically allocated
    rinTinTin = Dog() # Dynamically allocated

    whiskers.PetAnimal()
    fido.PetAnimal()
    rinTinTin.PetAnimal()

    Dog._FavoriteFood = 'milkbones'
    whiskers.PetAnimal()
    fido.PetAnimal()
    rinTinTin.PetAnimal()

# Output is:
# Thank you for petting me. But it's 13:05:02.255000, you should feed me. My favorite food is tuna
# Thank you for petting me. But it's 13:05:02.255000, you should feed me. My favorite food is steak
# Thank you for petting me. But it's 13:05:02.255000, you should feed me. My favorite food is steak
# Thank you for petting me. But it's 13:05:02.255000, you should feed me. My favorite food is tuna
# Thank you for petting me. But it's 13:05:02.255000, you should feed me. My favorite food is milkbones
# Thank you for petting me. But it's 13:05:02.256000, you should feed me. My favorite food is milkbones